Perturbation Theory for Viscosity Solutions of Hamilton-Jacobi Equations and Stability of Aubry-Mather Sets

نویسنده

  • Diogo A. Gomes
چکیده

In this paper we study the stability of integrable Hamiltonian systems under small perturbations, proving a weak form of the KAM/Nekhoroshev theory for viscosity solutions of Hamilton-Jacobi equations. The main advantage of our approach is that only a finite number of terms in an asymptotic expansion are needed in order to obtain uniform control. Therefore there are no convergence issues involved. An application of these results is to show that Diophantine invariant tori and Aubry-Mather sets are stable under small perturbations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A stochastic analogue of Aubry–Mather theory*

In this paper, we discuss a stochastic analogue of Aubry–Mather theory in which a deterministic control problem is replaced by a controlled diffusion. We prove the existence of a minimizing measure (Mather measure) and discuss its main properties using viscosity solutions of Hamilton–Jacobi equations. Then we prove regularity estimates on viscosity solutions of the Hamilton–Jacobi equation usin...

متن کامل

Viscosity Solutions Methods for Converse Kam Theory

The main objective of this paper is to prove new necessary conditions to the existence of KAM tori. These converse KAM conditions, can be used to detect gaps between KAM tori and Aubry-Mather sets. By exploring the connections between viscosity solutions of Hamilton-Jacobi equations, KAM and Aubry-Mather theories we develop a set of explicit a-priori estimates for smooth viscosity solutions tha...

متن کامل

Weak KAM Theory: the connection between Aubry-Mather theory and viscosity solutions of the Hamilton-Jacobi equation

The goal of this lecture is to explain to the general mathematical audience the connection that was discovered in the last 20 or so years between the Aubry-Mather theory of Lagrangian systems, due independently to Aubry and Mather in low dimension, and to Mather in higher dimension, and the theory of viscosity solutions of the Hamilton-Jacobi equation, due to Crandall and Lions, and more precis...

متن کامل

A Stochastic Analog of Aubry-mather Theory

In this paper we discuss a stochastic analog of AubryMather theory in which a deterministic control problem is replaced by a controlled diffusion. We prove the existence of a minimizing measure (Mather measure) and discuss its main properties using viscosity solutions of Hamilton-Jacobi equations. Then we prove regularity estimates on viscosity solutions of HamiltonJacobi equation using the Mat...

متن کامل

On the Large Time Behavior of Solutions of Hamilton-Jacobi Equations

In this article, we study the large time behavior of solutions of first-order Hamilton-Jacobi Equations, set in a bounded domain with nonlinear Neumann boundary conditions, including the case of dynamical boundary conditions. We establish general convergence results for viscosity solutions of these Cauchy-Neumann problems by using two fairly different methods : the first one relies only on part...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Math. Analysis

دوره 35  شماره 

صفحات  -

تاریخ انتشار 2003